$f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ द्वारा परिभाषित फलन का प्रांत है 

  • [JEE MAIN 2019]
  • A

    $\left( {1,2} \right) \cup \left( {2,\infty } \right)$

  • B

    $\left( { - 1,0} \right) \cup \left( {1,2} \right) \cup \left( {3,\infty } \right)$

  • C

    $\left( { - 1,0} \right) \cup \left( {1,2} \right) \cup \left( {2,\infty } \right)$

  • D

    $\left( { - 2, - 1} \right) \cup \left( { - 1,0} \right) \cup \left( {2,\infty } \right)$

Similar Questions

मान लें कि $N$ एक धनात्मक संख्याओं का समुच्चय हैं। सभी $n \in N$ के लिए मान लें कि

$f_n=(n+1)^{1 / 3}-n^{1 / 3}$ एवं $A=\left\{n \in N : f_{n+1}<\frac{1}{3(n+1)^{2 / 3}} < f_n\right\}$ तब

  • [KVPY 2019]

यदि $f(x) = \cos (\log x)$, तब $f(x).f(4) - \frac{1}{2}\left[ {f\left( {\frac{x}{4}} \right) + f(4x)} \right]$ का मान होगा

माना $a, b, c \in R$ यदि $f(x)=a x^{2}+b x+c$ ऐसा है कि $a+b+c=3$ है तथा सभी $x, y \in R$ के लिए
$f(x+y)=f(x)+f(y)+x y$ है, तो $\sum_{n=1}^{10} f(n)$ बराबर है:

  • [JEE MAIN 2017]

माना $x$ एक अशून्य परिमेय संख्या और $y$ एक अपरिमेय संख्या है। तब $xy$ है

माना एक अवकलनीय फलन $\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)$ के लिए $5 f(x+y)=f(x) \cdot f(y), \forall x, y \in R$ है। यदि $\mathrm{f}(3)=320$, तो $\sum_{\mathrm{n}=0}^5 \mathrm{f}(\mathrm{n})$ बराबर है :

  • [JEE MAIN 2023]